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1 Express

un = 1

4n2 − 1

in partial fractions, and hence find
N

∑
n=1

un in terms ofN. [4]

Deduce that the infinite seriesu1 + u2 + u3 + . . . is convergent and state the sum to infinity. [2]

2 Draw a diagram to illustrate the regionR which is bounded by the curve whose polar equation is
r = cos 2θ and the linesθ = 0 andθ = 1

6
π. [2]

Determine the exact area ofR. [4]

3 Prove by induction, or otherwise, that

232n + 312n + 46

is divisible by 48, for all integersn ≥ 0. [6]

4 The linear transformation T :�4 → �4 is represented by the matrix

A = ⎛⎜⎜⎝
1 −1 2 3
2 −3 4 5
5 −6 10 14
4 −5 8 11

⎞⎟⎟⎠ .

Show that the dimension of the range space of T is 2. [3]

Let M be a given 4× 4 matrix and letS be the vector space consisting of vectors of the formMAx,
wherex ∈ �4. Show that ifM is non-singular then the dimension ofS is 2. [4]

5 The curveC has equation

y = 2x + 3(x − 1)
x + 1

.

(i) Write down the equations of the asymptotes ofC. [2]

(ii) Find the set of values ofx for which C is above its oblique asymptote and the set of values ofx
for which C is below its oblique asymptote. [3]

(iii) Draw a sketch ofC, stating the coordinates of the points of intersection ofC with the coordinate
axes. [4]
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6 (a) The equation of a curve is

y = 2
√

3
3

x
3
2.

Find the length of the arc of the curve from the origin to the point wherex = 1. [4]

(b) The variablesx andy are such that

y3 + (dy
dx

)3 = x4 + 6.

Given thaty = −1 whenx = 1, find the value of
d2y

dx2
whenx = 1. [5]

7 Given that

In = �
1
2
π

0
sinn x dx,

wheren ≥ 0, prove that

I
n+2

= (n + 1
n + 2

)I
n
. [4]

The region bounded by thex-axis and the arc of the curvey = sin4 x from x = 0 to x = π is denoted
by R. Determine they-coordinate of the centroid ofR. [5]

8 Obtain the general solution of the differential equation

d2y

dt2
+ 6

dy
dt

+ 25y = 80e−3t. [5]

Given thaty = 8 and
dy
dt

= −8 whent = 0, show that 0≤ ye3t ≤ 10 for all t. [5]

9 Given that� = eiθ andn is a positive integer, show that

�n + 1
�n = 2 cosnθ and �n − 1

�n = 2i sinnθ. [2]

Hence express cos7θ in the form

p cos 7θ + q cos 5θ + r cos 3θ + s cosθ,

where the constantsp, q, r, s are to be determined. [4]

Find the mean value of cos7 2θ with respect toθ over the interval 0≤ θ ≤ 1
4
π, leaving your answer in

terms ofπ. [5]
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10 The equation of the planeΠ is

2x + 3y + 4� = 48.

Obtain a vector equation ofΠ in the form

r = a + λb + µc,

wherea, b andc are of the formpi, qi + rj andsi + tk respectively, and wherep, q, r, s, t are integers.
[6]

The linel has vector equationr = 29i − 2j − k + θ(5i − 6j + 2k). Show thatl lies in Π . [3]

Find, in the formax + by + c� = d, the equation of the plane which containsl and is perpendicular
to Π . [4]

11 Answer onlyone of the following two alternatives.

EITHER

Obtain the sum of the squares of the roots of the equation

x4 + 3x3 + 5x2 + 12x + 4 = 0. [2]

Deduce that this equation does not have more than 2 real roots. [3]

Show that, in fact, the equation has exactly 2 real roots in the interval−3 < x < 0. [5]

Denoting these roots byα andβ, and the other 2 roots byγ andδ , show that|γ | = |δ | = 2√(αβ) . [4]

OR

The square matrixA hasλ as an eigenvalue with corresponding eigenvectorx. The non-singular matrix
M is of the same order asA. Show thatMx is an eigenvector of the matrixB, whereB = MAM−1,
and thatλ is the corresponding eigenvalue. [3]

It is now given that

A = ( 1 0 0
a −3 0
b c −5

) and M = ( 1 0 1
0 1 0
0 0 1

) .

(i) Write down the eigenvalues ofA and obtain corresponding eigenvectors in terms ofa, b, c. [4]

(ii) Find the eigenvalues and corresponding eigenvectors ofB. [4]

(iii) Hence find a matrixQ and a diagonal matrixD such thatBn = QDQ−1. [3]

[You are not required to findQ−1.]
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